5.4: Distinguishing Between Surface Area and Volume (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    39643
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Lesson

    Let's contrast surface area and volume.

    Exercise \(\PageIndex{1}\): Attributes and Their Measures

    For each quantity, choose one or more appropriate units of measurement.

    For the last two, think of a quantity that could be appropriately measured with the given units.

    Quantities

    1. Perimeter of a parking lot:
    2. Volume of a semi truck:
    3. Surface area of a refrigerator:
    4. Length of an eyelash:
    5. Area of a state:
    6. Volume of an ocean:
    7. ________________________: miles
    8. ________________________: cubic meters

    Units

    • millimeters (mm)
    • feet (ft)
    • meters (m)
    • square inches (sq in)
    • square feet (sq ft)
    • square miles (sq mi)
    • cubic kilometers (cu km)
    • cubic yards (cu yd)

    Exercise \(\PageIndex{2}\): Building with 8 Cubes

    This applet has 16 cubes in its hidden stack. Build two different shapes using 8 cubes for each.

    For each shape, determine the following information and write it on a sticky note.

    • Give a name or a label (e.g., Mae’s First Shape or Eric’s Steps).
    • Determine its volume.
    • Determine its surface area.

    Exercise \(\PageIndex{3}\): Comparing Prisms Without Building Them

    Three rectangular prisms each have a height of 1 cm.

    • Prism A has a base that is 1 cm by 11 cm.
    • Prism B has a base that is 2 cm by 7 cm.
    • Prism C has a base that is 3 cm by 5 cm.
    1. Find the surface area and volume of each prism. Use the dot paper to draw the prisms, if needed.
    5.4: Distinguishing Between Surface Area and Volume (2)
    1. Analyze the volumes and surface areas of the prisms. What do you notice? Write 1 or 2 observations about them.

    Are you ready for more?

    Can you find more examples of prisms that have the same surface areas but different volumes? How many can you find?

    Summary

    Length is a one-dimensional attribute of a geometric figure. We measure lengths using units like millimeters, centimeters, meters, kilometers, inches, feet, yards, and miles.

    5.4: Distinguishing Between Surface Area and Volume (3)

    Area is a two-dimensional attribute. We measure area in square units. For example, a square that is 1 centimeter on each side has an area of 1 square centimeter.

    5.4: Distinguishing Between Surface Area and Volume (4)

    Volume is a three-dimensional attribute. We measure volume in cubic units. For example, a cube that is 1 kilometer on each side has a volume of 1 cubic kilometer.

    5.4: Distinguishing Between Surface Area and Volume (5)

    Surface area and volume are different attributes of three-dimensional figures. Surface area is a two-dimensional measure, while volume is a three-dimensional measure.

    Two figures can have the same volume but different surface areas. For example:

    • A rectangular prism with side lengths of 1 cm, 2 cm, and 2 cm has a volume of 4 cu cm and a surface area of 16 sq cm.
    • A rectangular prism with side lengths of 1 cm, 1 cm, and 4 cm has the same volume but a surface area of 18 sq cm.
    5.4: Distinguishing Between Surface Area and Volume (6)

    Similarly, two figures can have the same surface area but different volumes.

    • A rectangular prism with side lengths of 1 cm, 1 cm, and 5 cm has a surface area of 22 sq cm and a volume of 5 cu cm.
    • A rectangular prism with side lengths of 1 cm, 2 cm, and 3 cm has the same surface area but a volume of 6 cu cm.
    5.4: Distinguishing Between Surface Area and Volume (7)

    Glossary Entries

    Definition: Base (of a Prism or Pyramid)

    The word base can also refer to a face of a polyhedron.

    A prism has two identical bases that are parallel. A pyramid has one base.

    A prism or pyramid is named for the shape of its base.

    5.4: Distinguishing Between Surface Area and Volume (8)

    Definition: Face

    Each flat side of a polyhedron is called a face. For example, a cube has 6 faces, and they are all squares.

    Definition: Net

    A net is a two-dimensional figure that can be folded to make a polyhedron.

    Here is a net for a cube.

    5.4: Distinguishing Between Surface Area and Volume (9)

    Definition: Polyhedron

    A polyhedron is a closed, three-dimensional shape with flat sides. When we have more than one polyhedron, we call them polyhedra.

    Here are some drawings of polyhedra.

    5.4: Distinguishing Between Surface Area and Volume (10)

    Definition: Prism

    A prism is a type of polyhedron that has two bases that are identical copies of each other. The bases are connected by rectangles or parallelograms.

    Here are some drawings of prisms.

    5.4: Distinguishing Between Surface Area and Volume (11)

    Definition: Pyramid

    A pyramid is a type of polyhedron that has one base. All the other faces are triangles, and they all meet at a single vertex.

    Here are some drawings of pyramids.

    5.4: Distinguishing Between Surface Area and Volume (12)

    Definition: Surface Area

    The surface area of a polyhedron is the number of square units that covers all the faces of the polyhedron, without any gaps or overlaps.

    For example, if the faces of a cube each have an area of 9 cm2, then the surface area of the cube is \(6\cdot 9\), or 54 cm2.

    Definition: Volume

    Volume is the number of cubic units that fill a three-dimensional region, without any gaps or overlaps.

    For example, the volume of this rectangular prism is 60 units3, because it is composed of 3 layers that are each 20 units3.

    5.4: Distinguishing Between Surface Area and Volume (13)

    Practice

    Exercise \(\PageIndex{4}\)

    Match each quantity with an appropriate unit of measurement.

    1. The surface area of a tissue box
    2. The amount of soil in a planter box
    3. The area of a parking lot
    4. The length of a soccer field
    5. The volume of a fish tank
    1. Square meters
    2. Yards
    3. Cubic inches
    4. Cubic feet
    5. Square centimeters

    Exercise \(\PageIndex{5}\)

    Here is a figure built from snap cubes.

    5.4: Distinguishing Between Surface Area and Volume (14)
    1. Find the volume of the figure in cubic units.
    2. Find the surface area of the figure in square units.
    3. True or false: If we double the number of cubes being stacked, both the volume and surface area will double. Explain or show how you know.

    Exercise \(\PageIndex{6}\)

    Lin said, “Two figures with the same volume also have the same surface area.”

    1. Which two figures suggest that her statement is true?
    2. Which two figures could show that her statement is not true?
    5.4: Distinguishing Between Surface Area and Volume (15)

    Exercise \(\PageIndex{7}\)

    Draw a pentagon (five-sided polygon) that has an area of 32 square units. Label all relevant sides or segments with their measurements, and show that the area is 32 square units.

    (From Unit 1.4.1)

    Exercise \(\PageIndex{8}\)

    1. Draw a net for this rectangular prism.
    5.4: Distinguishing Between Surface Area and Volume (16)
    1. Find the surface area of the rectangular prism.

    (From Unit 1.5.4)

    5.4: Distinguishing Between Surface Area and Volume (2024)

    References

    Top Articles
    AuctionZip Review for August 2024 | Best Online Auction Sites
    Best Thai Restaurants In Manchester
    Matgyn
    Tryst Utah
    Hotels
    Fat People Falling Gif
    Lifebridge Healthstream
    Mcfarland Usa 123Movies
    Mileage To Walmart
    St Als Elm Clinic
    Moe Gangat Age
    DIN 41612 - FCI - PDF Catalogs | Technical Documentation
    Sport Clip Hours
    Dit is hoe de 130 nieuwe dubbele -deckers -treinen voor het land eruit zien
    Byte Delta Dental
    Costco Gas Foster City
    Byui Calendar Fall 2023
    Hollywood Bowl Section H
    Craigslist Missoula Atv
    Unity - Manual: Scene view navigation
    Craigslist Sparta Nj
    Dallas Craigslist Org Dallas
    Wbiw Weather Watchers
    Teen Vogue Video Series
    Weve Got You Surrounded Meme
    Reicks View Farms Grain Bids
    Hctc Speed Test
    15 Primewire Alternatives for Viewing Free Streams (2024)
    Busted Mugshots Paducah Ky
    How To Improve Your Pilates C-Curve
    Mchoul Funeral Home Of Fishkill Inc. Services
    Alternatieven - Acteamo - WebCatalog
    Nurtsug
    Datingscout Wantmatures
    Ultra Clear Epoxy Instructions
    Www Craigslist Com Shreveport Louisiana
    Indiana Wesleyan Transcripts
    Ny Post Front Page Cover Today
    Skyrim:Elder Knowledge - The Unofficial Elder Scrolls Pages (UESP)
    Tokyo Spa Memphis Reviews
    Troy Gamefarm Prices
    The disadvantages of patient portals
    2008 DODGE RAM diesel for sale - Gladstone, OR - craigslist
    Has any non-Muslim here who read the Quran and unironically ENJOYED it?
    Legit Ticket Sites - Seatgeek vs Stubhub [Fees, Customer Service, Security]
    Lamont Mortuary Globe Az
    Walgreens On Secor And Alexis
    Tableaux, mobilier et objets d'art
    Fine Taladorian Cheese Platter
    Egg Inc Wiki
    Gear Bicycle Sales Butler Pa
    Tenichtop
    Latest Posts
    Article information

    Author: Terrell Hackett

    Last Updated:

    Views: 6409

    Rating: 4.1 / 5 (72 voted)

    Reviews: 95% of readers found this page helpful

    Author information

    Name: Terrell Hackett

    Birthday: 1992-03-17

    Address: Suite 453 459 Gibson Squares, East Adriane, AK 71925-5692

    Phone: +21811810803470

    Job: Chief Representative

    Hobby: Board games, Rock climbing, Ghost hunting, Origami, Kabaddi, Mushroom hunting, Gaming

    Introduction: My name is Terrell Hackett, I am a gleaming, brainy, courageous, helpful, healthy, cooperative, graceful person who loves writing and wants to share my knowledge and understanding with you.